Precalculus

4-04 Right Triangle Trigonometry and Identities

Basic Identities

Reciprocal

$\sin u=\frac{1}{\csc u}$
$\csc u=\frac{1}{\sin u}$

$$
\begin{aligned}
\cos u & =\frac{1}{\sec u} \\
\sec u & =\frac{1}{\cos u}
\end{aligned}
$$

$\tan u=\frac{1}{\cot u}$
$\cot u=\frac{1}{\tan u}$

Quotient
$\tan u=\frac{\sin u}{\cos u}$

Pythagorean

$\sin ^{2} u+\cos ^{2} u=1 \quad 1+\tan ^{2} u=\sec ^{2} u \quad \cot ^{2} u+1=\csc ^{2} u$
Note: $\sin ^{2} u=(\sin u)^{2}$
Cofunction Identities

$\sin \left(90^{\circ}-u\right)=\cos u$	$\cos \left(90^{\circ}-u\right)=\sin u$
$\sec \left(90^{\circ}-u\right)=\csc u$	$\csc \left(90^{\circ}-u\right)=\sec u$
$\tan \left(90^{\circ}-u\right)=\cot u$	$\cot \left(90^{\circ}-u\right)=\tan u$

Let θ be an acute angle such that $\cos \theta=0.96$
Find $\sin \theta$
$\tan \theta$

Let β be an acute angle such that $\tan \beta=4$
Find $\cot \beta$
$\sec \beta$

A 12-meter flagpole casts a 6-meter shadow. Find the angle of elevation of the sun.

